Friday, September 20, 2019

Can Nanotechnology Transform Hydrogen Fuel Cell Cars?

Can Nanotechnology Transform Hydrogen Fuel Cell Cars? Juan Manuel Vargas Ferreira    Can Nanotechnology convert hydrogen fuel cell cars into mainstream vehicles?   Ã‚   Section 1: Abstract The aim of this report is to determine whether Nanotechnology can transform hydrogen fuel cell cars into mainstream vehicles through improvements in the cost of catalysts (Section 4:A) plus hydrogen production (Section 4:B); battery life (Section 4:C) and the safety of hydrogen storage (Section 4:D). The word mainstream for this report means that there will be at least 1.15 million hydrogen fuel cell cars on the worlds roads [the number of electric cars in the the planet (Carbon brief, 2016)] Section 2: Introduction      Ã‚   Nanotechnology is about observing and manipulating matter occupying the nanoscale, which is ranges from 1 nanometre to 100 nanometres (Nanodic.com, nd). A nanometre is one billionth of a meter or 100 000 times smaller than the width of human hair (DigPhilosophy, 2013). Nanotechnology is a principle factor in improving hydrogen fuel cells, which are devices that harness the energy of hydrogen to make electricity via a chemical reaction without combustion (CHFCA, nd). These devices will be crucial as they are utilized to make zero carbon footprint cars. Reducing the carbon footprint of humanity will reduce the far reaching effects of global warning, which encompass ecosystems and agriculture among other variables (Barret, nd). Therefore, the development and implementation of hydrogen fuel cell cars will have a great influence in safe guarding life in our planet. [DS1] Section 3: Methodology Financial Sources for Research For any project to go forward to the physical research stage there must be internal and/or external sources of finance. Some examples include government grants, companies and non profit companies (Understanding Science, nd). For my own research, the most appropriate source of finance would be familys income. This is because I will solely be carrying out secondary research. Creating a budget for Research[DS2] The budget required for my research entails the consideration of the following: Cost of broadband (SKY, 2016) Cost of electricity (sust-it, 2015) Cost of leasing of a computer (HARDSOFT, 2016) Cost Specification Monitory Cost (pounds) Broadband 16 Electricity 0.34 Leasing a computer 65 Total cost 81.34 Research procedures and techniques In order to carry out the necessary research I used the Internets extensive database. The techniques involved in this kind of research are web browsing, which involves writing the topic or question you wish to explore in a search engine and extracting revelation information from the sources that appear. The other technique involved is referencing with the world renowned Harvard referencing model. Ethical Issues: Nanotechnology[DS3] Although Nanotechnology has an array of very useful applications some ethical concerns were raised against its implementation. Such concerns revolve mainly around the fact that it is not yet clear whether nanoparticles can, in fact, interact negatively with our cells. There are already examples of other types of particles of similar dimensions causing harm to our bodies. Such an example would be car fume particles being deposited in our lungs (techNyouvids, 2013) and possibly causing cancer, cardiovascular diseases and asthma attacks (Nairaland Forum, 2013). It is therefore only logical to question whether nanomaterials will have the same or worse effects on our health. As a result, more research would have to be carried out if Nanotechnology is to be an established discipline with common practice within society. Section 4: Results and Discussion A: Reducing the cost of the catalysts Nanotechnology can reduce the cost of the catalyst (normally Platinum) used in a hydrogen fuel cells as less of the catalyst would be used (Soutter, 2016). In order to scale down traditional catalysts, the top down manufacturing process can be used, which involves breaking down material of larger dimension into the desired nanomaterial (GrennFacts, 2016). Notable disadvantages of this process include the fact that a lot of material is wasted ([2] Nano.gov, nd). and that approximately 250 complex steps are required to have the finished product (NanoScale Systems, 2015). An alternative technique is the bottom up manufacturing process, which entails building nanomaterials by constructing single atoms and molecules (GrennFacts, 2016). Additionally, since the catalyst is at nanoscale it will have a greater surface area; increasing the reactivity of the catalyst and so the speed of the fuel cells chemical reaction (Nano.gov, nd). The benefits can be further developed by the introduction of porous nano support structures such as nanotubes, which would make the platinum nanoparticles even more accessible for reacting (Soutter, 2016). This would mean that electricity would me delivered to the motor more quickly and so increase the acceleration of the hydrogen fuel cell vehicle. Such an improvement would definitely make it more competitive in the market and aid fuel cell cars to enter into mainstream industry waters. Furthermore, the development of nitrogen doped nanotubes can replace platinum catalyst. Hence reducing the cost of hydrogen fuel cells since the cost of the catalyst amounted for 25% of the overall fuel cell cost (Soutter, 2016). The cheaper cost of nanotube catalysts is not the only advantage they offer; they will also provide the fuel cell with the same or greater power output compared to the standard platinum catalyst. It is also important to consider the fact that nanotube structures are also stronger than conventional catalysts meaning they are not compromised by carbon monoxide when reacting chemically to create electricity. Such improvements would mean that fuel cell cars are even cheaper; more powerful and have a longer running life. As a result, Nanotechnology is certainly aiding this emerging car technology to enter the main road of the 21st-century commercial vehicle industry. B: Reducing the cost of hydrogen production Around 75% of everything in our universe is in fact hydrogen (Dnews, 2015). As result utilizing this abundant element to fuel our cars seems like a well-funded idea. Its production is also not in its infancy of development as the U.S creates 9 million metric tones of hydrogen annually (Dnews, 2015). However, current methods of hydrogen production are not ideal. An example would be that the method of obtaining hydrogen by breaking natural gas with high temperatures and pressures produces carbon dioxide. Another procedure involves splitting oxygen and hydrogen atoms in water with electricity, formally known as electrolysis (Dnews, 2015). Unfortunately, electricity for electrolysis is mainly obtained through the combustion of coal that is another carbon dioxide emitting process. The process of hydrogen production is also a notoriously expensive procedure, which is part of the reason for the lack of implementation of hydrogen fuel cell cars. Interestingly, however, creating new catalysts can also reduce the manufacturing of hydrogen. Since hydrogen can be produced by decomposing natural gas, which requires being passed over silicon or aluminum catalyst (BBC Bitesize, nd), a decrease in the price of the catalyst would directly reduce the cost of manufacturing hydrogen. C: Extending fuel cells life once fully charged There have been numerous collaborations in order to improve the durability of batteries. One exciting development are nanowire batteries, which are now said to be able to withstand 200, 000 rounds of charging due to work at the University of California Irvine. Nanowires are made from gold and future developments could potentially provide the world with the first battery that does not require recharging. Another type of battery using nanotechnology has been developed by the MIT that last three times as long as current options on the market and it can be fully charged in just 6 minutes; they have named it nano yolk (Pocket lit, 2016). Such developments would not only mean hydrogen fuel cell cars become mainstream vehicles but the main way of transport for our ever growing population (Pocket lit, 2016). D: Increasing the safety of hydrogen storage A recent paper (ACS Nano) has suggested Sodium borohydride (NaBH4) as an absorptive storage compound for hydrogen. The paper by leading author Dr. Kondo Francois Aguey Zinsou also stated that NaBH4 can absorb hydrogen so that it gives hydrogen fuel the same energy potential as that of petrol in a similar fuel tank. This would improve the safety of hydrogen storage since the compound NaBaH4 doesnt release hydrogen significantly at cabin temperatures, ranging from 57.3 degrees Celsius to 60.5 degrees Celsius (Manning, R., Ewing, J., 2009) [DS4]However, the compound does have to be engineered in the nanoscale and it has to be engulfed in a nickel shell. Moreover, the sponge-like compound (NaBH4) only releases hydrogen predominantly at 350 degrees Celsius (The A Register, nd). Section 5: Conclusions[DS5] In order to determine whether Nanotechnology can transform hydrogen fuel cell cars into mainstream vehicles, the possibility of 1.15 million hydrogen fuel cell cars being part of the worlds roads must be analyzed. A theoretical perspective on the matter is provided by the US setting the target of having at least 15% of all of Californias cars to be zero emission vehicles be 2025 (Dnews, nd), that translates to 4.2 million cars [In 2012 there were 27.7 million registered cars in California (Reference, nd)]. That most certainly exceeds my target of 1.5 million, which suggest Nanotechnology is on its way to make fuel cell cars mainstream vehicles in America at least. Therefore, I can conclude that Nanotechnology will turn hydrogen fuel cell cars into mainstream vehicles. It is just a matter of time and whether it will be sooner rather than later. Section 6: Evaluation[DS6] Overall the micro research project was carried well. I managed to acquire information from the Internet related to my chosen topic. Although a modification I would make for future report-writing would be to explore my general and then specific subject area before writing my report. I would do this because it will provide me with greater focus from the preliminary stages. In order to further the research work in this report, I would like to carry out primary research on the topic of producing hydrogen with no greenhouse emissions and on whether water vapor is a worse greenhouse gas than carbon dioxide. Section 7: References[DS7] Barett, J.T. (nd) How Does the Release of Car Exhaust Fumes Cause Global Warming Available at:http://education.seattlepi.com/release-car-exhaust-fumes-cause-global-warming-3682.html (Accessed 30 August 2016). BBC Bitesize (nd) Fractional distillation Available at: http://www.bbc.co.uk/education/guides/zm2v4wx/revision/2 (Accessed 2 September 2016) CarbonBrief (2016) IEA: There are now more than 1 million electric cars on the worlds road Available at: https://www.carbonbrief.org/iea-there-are-now-more-than-one-million-electric-cars-on-the-worlds-roads (Accessed 30 August 2016). CHFCA (nd) What is a fuel cell Available at: http://www.chfca.ca/education-centre/what-is-a-fuel-cell/ (Accessed 30 August 2016). DigPhilosophy (2013) What is Nanotechnology? What applications can it be used for? Available at: https://youtu.be/WOqEk440JZ8 (Accessed 29 August 2016). Dnews (2015) How Hydrogen Fuel Is Made Available at: https://www.youtube.com/watch?v=r5b6SthDbsE (Accessed 2September 2016) GreenFacts (2016) Bottom-up vs Top-down (in the context of nanoparticle formation) Available at: http://www.greenfacts.org/glossary/abc/bottom-up-top-down.htm (Accessed 31 August 2016) HARDSOFT (2016) Lease and Hire the iMac 27 Retina 5k Available at: https://www.hardsoftcomputers.co.uk/apple-macs/apple-desktops/imac-27-retina-5k (Accessed 31 August 2016) Manning, R., Ewing, J. (2009) Temperature in Cars Survey Available at: https://www.racq.com.au//cars%20and%20driving//0814_temperature_in_cars_su.. (Accessed 3 September 2016) Nairaland Forum (2013) Do You Know How Dangerous The Car Exhaust Is To Your Health Car Talk Nairaland Available at: http://www.nairaland.com/1461704/know-how-dangerous-car-exhaust(Accessed 30 August 2016). Nanodic.com (nd) Nanoscale Available at: http://www.nanodic.com/general/Nanoscale.htm (Accessed 1 September 2016) Nano.gov (nd) Whats So Special about the Nanoscale Available at: http://www.nano.gov/nanotech-101/special (Accessed 30 August 2016). [2] Nano.gov (nd) Manufacturing at the Nanoscale Available at: http://www.nano.gov/nanotech-101/what/manufacturing (Accessed 31 August 2016) NanoScale Systems (2015) Top Down vs Bottom Up: 3D -Printing of sensors on the nanoscale Available at: https://www.youtube.com/watch?v=X1GepWC4WQ0 (Accessed 31 August 2016) Pocket lit (2016) Future Batteries, coming soon: charge in seconds, last months and power over air Available at: http://www.pocket-lint.com/news/130380-future-batteries-coming-soon-charge-in-seconds-last-months-and-power-over-the-air (Accessed 2September 2016) Register (nd) How many vehicles are in California Available at: https://www.reference.com/vehicles/many-registered-vehicles-california-52c20f61bcb10e9d (Accessed 2 September 2016) SKY (2016) Sky Broadband Fibre and Talk Available at: http://www.sky.com/shop/broadband-talk/ (Accessed 31 August 2016) Soutter, W. (2016) Nanotechnology in Fuel Cells Available at: http://www.azonano.com/article.aspx?ArticleID=3032(Accessed 30 August 2016). sust-it (2015) Electricity Cost Calculator Available at: http://www.sust-it.net/energy-calculator.php (Accessed 31 August 2016) Understanding Science (nd) Who pays for science Available at: http://undsci.berkeley.edu/article/who_pays (Accessed 30 August 2016). techNyouvids (2013) Manufactured Nanomaterials: Health, Safety and the Environment Available at: https://www.youtube.com/watch?v=MkpcUpattE8 (Accessed 31 August 2016) The A Register (nd) Scientists find a new way to store hydrogen Available at: http://www.theregister.co.uk/2012/08/17/safe_hydrogen_storage/ (Accessed 2nd of September) Section 8: Acknowledgements I would like to thank the University of East London for hosting the STEM4TECH lectures that enabled me to understand and apply common practice in academia regarding report writing. I would also like to thank Dekkel Simmons for delivering the lectures and Andre Mozert for supporting the STEM4TECH project. [DS1]Good [DS2]Good [DS3]Good. [DS4]Not consistent with Harvard referencing. [DS5]Good [DS6]Good [DS7]Good

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.